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Nicholas of Cusa  
and the Infinite

Thomas J. McFarlane 

N
icholas of  Cusa (1401-64) was a philosopher and theologian whose writings influenced the 
development of  Renaissance mathematics and science. The first part of  this article traces the 
historical development in the West of  thought about the Infinite prior to the time of  Nicholas of  

Cusa. The second part of  the article discusses his philosophy as presented in his major work, On Learned 
Ignorance. The third part of  the article then examines the subsequent development of  thought about the 
Infinite and the ways in which Nicholas of  Cusa influenced mathematics and science.

Preface: A Meditation on the Infinite
“According to the movement of  

reason, plurality or multitude is opposed 
to unity. Hence, it is not a unity of  this 
sort which properly applies to God, but 
the unity to which neither otherness nor 
plurality nor multiplicity is opposed. This 
unity is the maximum name enfolding all 
things in its simplicity of  unity, and this is 
the name which is ineffable and above all 
understanding.”1

What is the Infinite? To define it as 
other than the finite is to set the infinite 
apart from the finite, and thereby limit 
it. To define the infinite, therefore, is to 
make it definite, and no longer infinite. In 
fact, to say anything at all of  the Infinite, 
is to actually say nothing about the true 
Infinite. Like the Tao, the Infinite that 
can be named is not the true Infinite. The 
Infinite, then, is ineffable. ...Or is it? If  we 
think that the Infinite is ineffable, we have 
once again defined it by distinguishing it 
from what is not ineffable. The Infinite is 
so utterly ineffable that we cannot even say 
that it is ineffable. Even this, however, is 
saying too much.

The Infinite is paradoxical and 
contradictory. Yet, while it cannot be 
defined or represented in rational terms, 
it is nevertheless profoundly meaningful. 
The Infinite is a numinous reality that 
has flooded the human mind with awe 

and inspiration for thousands of  years. 
Throughout history, the intuition of  
the Infinite has been known by equally 
profound and paradoxical terms: the 
Absolute, the One, the Unconditioned, 
the Unlimited, the Indivisible, and the 
Indefinite. Philosophers have identified it 
with Reality and Truth. Mystics have called 
it God, Brahman, Allah, and Tao. On the 
one hand, the Infinite inspires a sense of  
a potential for limitless expansion beyond 
any finite bound. On the other hand, the 
Infinite also inspires a sense of  an actual 
completeness comprehending everything 
without any exclusion whatsoever. 
The former is a view from the finite 
upward toward the unattainable and 
incomprehensible infinite, while the latter 
is an incomprehensible view from the 
infinite downward toward the finite that is 
identical with the infinite. As we will see, a 
dialectical play between these two aspects 
of  our intuition of  the Infinite reveals a 
process of  actualization of  the Infinite in 
the history of  Western thought.

A History of  the Infinite Before 1400
The concept of  infinity first appears 

in the West with Anaximander of  Miletus 
(ca. 610-546 BCE), who proposed that 
the principle of  all things is that which 
is without any limit (peras). This limitless 
principle is thus called the not-limited (to 
aperion). Because it is without any limit, 
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all opposites are transcended in to aperion, 
and all conflict between created things is 
reconciled. Whereas Anaximander viewed 
to aperion as good, Pythagoras (born ca. 
570 BCE) viewed to aperion as abhorrent, 
because it is incomprehensible, indefinite, 
and lacks the harmony and beauty that is 
present only in the cosmos. Pythagoras 
taught that all things are number, and 
that the cosmos is created and governed 
by comprehensible and definite 
numerical principles. In the Pythagorean 
cosmogenesis, the derivation of  the 
multiplicity of  things in the world from an 
original unity is identical to the derivation 
of  the numbers from the numerical unit, 
one. The Pythagoreans saw in all things 
combinations of  eternal principles, such 
as Limit and Unlimited, One and Many, 
At Rest and In Motion. This Pythagorean 
vision, which sees the material world of  
becoming as imitating the mathematical 
world of  being, provided the seminal insight 
at the foundation of  Western science, 
both ancient and modern. A problem 
with the Pythagorean vision, however, 
was discovered by the Pythagoreans 
themselves. If  the entire cosmos is 
constituted and ordered by whole numbers 
and their proportions, then everything 
must be comprehensible in terms of  
integral proportions of  other things. This 
thesis, however, was shown to be false 
when it was mathematically demonstrated 
that the length of  the diagonal of  a unit 
square is incommensurate with the lengths 

of  its sides. In modern terms, we might say 
that the Pythagoreans discovered that the 
square root of  two is not a rational number. 
The Greeks, however, did not consider 
geometric magnitudes to be numbers 
at all. Numbers were discrete integral 
quantities: 1, 2, 3, etc. that had arithmetic 
properties of  being even, odd, prime and 
so on. Geometric magnitudes, on the other 
hand, were continuous spatial objects for 
which concepts of  even and odd had no 
meaning. Because of  the impossibility 
of  expressing geometric magnitudes in 
terms of  arithmetic quantities, the Greeks 
considered arithmetic and geometry to 
be fundamentally distinct. This schism 
in mathematics between the continuous 
magnitudes of  geometry and the 
discrete quantities of  arithmetic was one 
manifestation of  the profound problem of  
relating the Unlimited and the Limited, the 
Infinite and the finite. The indefinite and 
incomprehensible to aperion was somehow 
present in the continuous magnitudes of  
geometry, and the discrete numbers and 
their ratios could not represent them.

Zeno developed several famous 
paradoxes that illustrate the incompatibility 
between the discrete and continuous. For 
example, in one variant of  Zeno’s thought 
experiments, it is shown that a flying arrow 
cannot hit its target since it must first travel 
half  way to the target, and then half  of  the 
remaining distance, and so on.
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In arithmetic terms, if  the total distance 
to the target is 1, then the arrow must first 
travel a distance of  1/2, then a distance 
of  1/4, then a distance of  1/8, and so 
on. After a number n of  such steps, the 
total distance traveled by the arrow will be  
1/2 + 1/4 + 1/8 + ... + 1/2n = 1 - 1/2n. 
No matter how large n is, however, this 
sum will always be less than the total 
distance to the target, since for any value 
of  n, 1 - 1/2n < 1. Thus, the arrow can 
never hit its target.

Zeno used this thought experiment to 
demonstrate the contradictions inherent 
in attempting to understand the unity of  
continuous motion in terms of  a diversity 
of  discrete comprehensible steps. Neither 
Zeno nor the Pythagoreans, however, 
resolved this paradox. Thus, the tension 
between Unlimited and Limited continued 
to play out in the dialectic of  Western 
thought.

One of  the important ways in which 
the dialectic between Infinite and finite 
played out in philosophic thought is in the 
attempts to understand the relationship 
between Being and Becoming. In addition 
to the problem of  explaining how the finite 
world of  becoming arises from the Infinite 
world of  Being, there is the additional 
problem of  understanding how becoming 
can be related to being. Heraclitus taught 
that the impermanent flux of  becoming 
implied that all opposites are united in 
One. Parmenides, like Heraclitus, affirmed 
the One but emphasized the reality of  
the One by arguing that change and 
plurality are impossible to begin with. 
Thus, the Pythagorean realm of  static 
being is fundamentally incompatible with 
the impermanence of  existing things. 
Neither Heraclitus nor Parmenides, 
however, provided an entirely satisfactory 
philosophical solution to the problem.

A compelling synthesis of  Being and 
Becoming, Limited and Unlimited, One 
and Many, was provided by Plato in his 

dialogues, most notably in his Parmenides. 
With his theory of  Forms and the notion 
of  participation, Plato provided an 
essentially Pythagorean solution to the 
problem of  how the Limited and Unlimited 
are related. In a naive understanding 
of  the forms, they are isolated, static 
patterns set in contrast with the changing 
phenomena of  a sensory world. In a more 
subtle understanding of  Plato’s theory of  
Forms, however, they are recognized as 
interpenetrating principles that are not 
other than their own instantiations. The 
realms of  being and becoming do not 
correspond to separate realms of  forms 
and sensible objects. Instead, being and 
becoming are both implicit in the nature 
of  both the forms and sensible objects. 
The Limited and Unlimited, therefore, 
are coexisting principles that are not 
fundamentally opposed to one another. 
A large part of  the significance of  Plato’s 
contribution can be understood in terms 
of  his synthesis of  the Infinite with the 
finite in a single body of  thought that 
encompasses them both and provides a 
way to understand their relationship to 
each other.

Based on the paradoxes of  the infinite 
discovered by Zeno and others, Aristotle 
rejected the notion that the infinite could 
be in any way actual, and proposed instead 
that the Infinite could only be a potential. 
Aristotle, in other words, rejected the 
Infinite as an actual existing reality. In 
Aristotle’s view, for example, the whole 
numbers are potentially infinite because 
there is no limit to how high one can 
count. The whole numbers are not actually 
infinite, however, because no matter how 
high one counts, one has only counted 
up to some finite number. One can never 
actually count to infinity. In addition, 
Aristotle rejected the actual existence of  the 
continuum. Thus, according to Aristotle, 
the arrow does reach the target because 
space is not actually infinitely divided. In 
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providing this solution to the paradoxes 
of  motion, however, Aristotle implicitly 
rejects the foundations of  geometry, which 
assumes the existence of  the continuum. 
This problem with Aristotle’s account of  
the infinite, however, did not prevent his 
ideas from having widespread influence 
for many centuries.

Using Aristotle’s idea of  the potential 
infinite, the Greek mathematician Eudoxus 
(408-355 BCE) provided the seed for what 
was to become calculus two thousand years 
later. Eudoxus’s method of  exhaustion 
was extensively used by Archimedes  
(287-212 BCE) to arrive at arithmetic 
formulas pertaining to geometric figures. 
For example, he was able to derive a 
formula for the area of  a circle as follows. 
Consider a regular polygon with n sides. 
Inscribe within the polygon a circle, and 
inscribe within the circle another polygon 
with n sides.

Now notice that both polygons 
approach the shape of  the circle as the 
number of  sides, n, becomes larger. Thus, 
for large values of  n, the areas of  the two 
polygons become very close to the area 
of  the circle. Notice also that the area of  
the circle is always between the area of  the 
smaller polygon and the area of  the larger 
polygon. The area of  the circle can thus 
be found with any desired precision by 
selecting a sufficiently large value of  n and 
calculating the areas of  the two polygons. 
This method, however, does not provide a 
precise value for the area of  the circle. To 

arrive at a precise formula for the actual 
area of  the circle, one would need to take 
n equal to infinity. But this would require 
one to add up an infinite number of  
triangles, which is impossible. Moreover, 
each triangle would have one side equal 
to zero, resulting in an area of  zero. The 
areas of  the triangles would thus add up 
to zero. Eudoxus’s method of  exhaustion, 
therefore, involves contradictions and 
paradoxes if  one applies it to the actual 
infinite. His method does not allow one 
to precisely calculate certain continuous 
magnitudes, or to understand the Infinite 
in finite terms. It only provides a technique 
for performing approximate calculations 
of  finite quantities that approximate 
continuous magnitudes. Although 
Eudoxus’s technique was a practical success, 
it did not solve the more fundamental 
problems of  infinity. For example, if  
there is no actual infinity, how are we to 

u n d e r s t a n d 
the existence 
of  the infinite 
continuum in 
geometry?

P l o t i n u s 
(205 - 270 CE),  
who drew 
heavily upon 
the philosophy 
of  Plato, is the 
founder of  

what is now known as Neoplatonism. In 
contrast with Aristotle, Plotinus defended 
the metaphysical reality of  the actual Infinite. 
While agreeing with Aristotle that there 
is no actual infinite in the sensible realm, 
Plotinus asserted the reality of  the actual 
Infinite in a transcendent realm known 
only through mystical insight. Augustine  
(354-430 CE) was influenced by Plotinus 
and Plato, and integrated much of  
Platonism and Neoplatonism with 
Christianity. The Platonic insight continued 
to dominate the Christian worldview until 
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as papal legate to popes Eugene IV, 
Nicholas V, and Pius II. In addition to 
leading an extremely active public life, 
Nicholas managed to write extensively 
on a wide variety of  juridical, theological, 
philosophical, and scientific subjects. In 
his philosophical writings he departed 
from the prevalent Aristotelian and 
scholastic doctrines. His first and 
most famous treatise, On Learned 
Ignorance (De docta ignorantia), is a mystical 
discourse on the finite and the infinite. 
In addition to presenting his important 
philosophical concepts of  learned 
ignorance and coincidence of  opposites, 
this seminal treatise also contains various 
bold astronomical and cosmological 
speculations that depart entirely from 
traditional doctrines. For example, long 
before Copernicus, he proposed that Earth 
is not at the center of  the cosmos, and is 
not at rest. He also argued long before 
Kepler that the motions of  the planets are 
not circular. These speculations, however, 
were not based on empirical observations 
but on metaphysical principles.

Nicholas read widely in various 
languages and was influenced by Plato and 
Neoplatonic thinkers such as Plotinus and 
Proclus. Nicholas also drew inspiration 
from Dionysius and Meister Eckhart. 
From Anselm he took the notion of  God 
as ultimate Maximum. From Ramon Lull 
he took the idea that the infinite is the 
joining of  beginning, middle, and end. 
The fundamental insight that inspires 
Nicholas’s thought, however, comes not 
from his wide learning, but from a mystical 
illumination in 1437 during a journey home 
from Constantinople. This gift from God, 
as he describes the vision, provided him 
with the key that allowed him to talk about 
the ineffable, and provided a way of  viewing 
opposites as coincident from the point of  
view of  infinity. According to Nicholas, 
this logic of  infinitude unites opposites, 
transcends comparison, overcomes limits 

Thomas Aquinas (1224-1274 CE), whose 
thought was predominantly Aristotelian. 
Aquinas, however, parted company with 
Aristotle by asserting his belief  in the 
metaphysical Infinite, i.e., God. Meanwhile, 
various mathematical arguments were 
being developed that fostered a more 
subtle understanding of  the infinite as 
represented in geometrical continuity. 
John Duns Scotus (1266-1308 CE), for 
example, argued that it was incorrect to 
think of  a circle as being composed of  an 
infinite number of  points. Consider two 
concentric circles of  different size.

On the one hand, the larger circle 
must have more points than the smaller 
circle since it has a longer circumference. 
On the other hand, because the points 
along the two circles can be paired up 
in a one-to-one correspondence, the 
circles must have the same number of  
points. Arguments such as these showed 
that reasoning about the infinite was not 
always entirely nonsensical. Although 
the conclusions may be paradoxical, it 
suggested that perhaps reason could 
somehow be applied to infinity without 
being entirely contradictory. The first 
person to demonstrate this possibility, and 
to turn the tide of  thought toward the 
mathematical and philosophical Infinite, 
was Nicholas of  Cusa.

Nicholas of  Cusa’s Philosophy
Nicholas of  Cusa (1401-1464) was 

a German cardinal, philosopher, and 
administrator. For many years he served 
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of  discursive reasoning, and goes beyond 
both positive and negative theology. The 
profound mystical insight at the heart 
of  Cusa’s logic of  infinitude is clearly 
expressed in the following passage: “In 
God we must not conceive of  distinction 
and indistinction, for example, as two 
contradictories, but we must conceive of  
them as antecedently existing in their own 
most simple beginning, where distinction 
is not other than indistinction.”2

An expression of  this insight is Cusa’s 
idea of  coincidence of  opposites. Cusa 
recognized that this idea is an expression 
of  the principle of  Incarnation, wherein 
God’s identification with creation in 
Jesus coincides with God’s transcendence 
above all creation. In God the opposites 
of  identity and difference coincide. Thus 
Nicholas does not present a merely 
negative theology, but a conception in 
which the ineffability of  the Infinite 
coincides with its expressibility, in which 
creation coincides with creator, and 
transcendent coincides with immanent. 
As Nicholas writes, “The great Dionysius 
says that our understanding of  God draws 
near to nothing rather than to something. 
But sacred ignorance teaches me that that 
which seems to the intellect to be nothing 
is the incomprehensible Maximum.”3

Like Plato, he has a synthetic philosophy 
that comprehends and integrates opposing 
streams of  thought. Also, Nicholas never 
attempts to present a consistent and self-
contained system of  thought. Instead, he 
remains open to unlimited elaborations of  
his seminal ideas of  learned ignorance and 
the coincidence of  opposites.

Learned 
i g n o r a n c e 
itself  is a 
coincidence 
of  opposites, 
for it teaches 
that the more 
we know 

our ignorance, the more we attain to true 
knowledge. Thus, as learned ignorance 
is perfected, knowledge and ignorance 
coincide. Using a comparison of  the 
Infinite with the finite, Nicholas explains 
learned ignorance as follows: “All those who 
make an investigation judge the uncertain 
proportionally, by means of  a comparison 
with what is taken to be certain. Therefore, 
every inquiry is comparative and uses the 
means of  comparative relation. ... Hence, 
the infinite, qua infinite, is unknown; for it 
escapes all comparative relation.”4

“It is self-evident that there is no 
comparative relation of  the infinite to 
the finite. ... Therefore, it is not the case 
that by means of  likeness a finite intellect 
can precisely attain the truth about 
things. ... For truth is not something 
more or something less but is something 
indivisible. Whatever is not truth cannot 
measure truth precisely. ... For the intellect 
is to truth as an inscribed polygon is to the 
inscribing circle.”5

Here Nicholas introduces a 
mathematical analogy to explain his 
metaphysical ideas. Just as the definite 
polygon cannot measure the continuous 
circle, our finite minds cannot know the 
Infinite. All we can know of  the Infinite is 
that we cannot know the Infinite. To the 
extent that we can understand the Infinite 
at all, Nicholas argued, we must understand 
it through the coincidence of  opposites. 
For example, Nicholas taught that, in the 
Infinite, the circle coincides with the line. 
He illustrated this paradoxical statement 
by considering a sequence of  circles of  
larger and larger diameters.
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As the circles increase in size, a given 
length of  the circumference is less curved 
and more similar to a straight line. The 
infinite circle, therefore, coincides with the 
line. The actualization of  this coincidence 
of  opposites, however, cannot be 
comprehended by the rational mind. It 
can only be seen through mystical insight 
that cannot be consistently expressed in 
rational terms. Nicholas thus embraces 
in his thought the opposites of  finite 
and Infinite, arguing for the limits of  our 
rational understanding, while also pointing 
to an insight that transcends these limits.

Nicholas believed that his doctrine 
of  the coincidence of  opposites had 
implications not just for theology and 
philosophy, but also for mathematics, 
physics, and other branches of  learning. 
Boldly contradicting the cosmology of  his 
day, Cusa argued that the cosmos is not 
bounded by a celestial sphere and does not 
have Earth, or the sun, at its center:

“It is impossible for the world machine 
to have this sensible earth, air, fire, or 
anything else for a fixed and immovable 
center. For in motion there is simply no  
minimum, such as a fixed center.... And 
although the world is not Infinite, it cannot 
be conceived of  as finite, since it lacks 
boundaries within which it is enclosed.... 
Therefore, just as the earth is not the 
center of  the world, so the sphere of  fixed 
stars is not its circumference.”6

Because the cosmos is infinitely large, 
it has no unique center at all, since it can 
be equally viewed as centered around any 
point. Nicholas thus introduced the notion 
of  spatial perspective into cosmological 
thinking:

“Since it always appears to every 
observer, whether on the earth, the sun, 
or another star, that one is, as if, at an 
immovable center of  things and that all 
else is being moved, one will always select 
different poles in relation to oneself, 

whether one is on the sun, the earth, the 
moon, Mars, and so forth. Therefore, the 
world machine will have, one might say, its 
center everywhere and its circumference 
nowhere, for its circumference and center 
is God, who is everywhere and nowhere.”7

Cusa goes even further to argue that 
Earth is actually in motion: “The earth, 
which cannot be the center, cannot lack all 
motion. In fact, it is even necessary that 
it be moved in such a way that it could be 
moved infinitely less.”8

Anticipating Kepler, Cusa says that 
the motions of  the planets and stars are 
not circular, and not uniform: “Even if  
it might seem otherwise to us, neither 
the sun nor the earth nor any sphere can 
describe a perfect circle by its motion...
nor is a sphere’s or a star’s motion at 
one moment ever precisely equal to their 
motion at another.”9

His cosmological speculations, 
therefore, did not merely anticipate the 
Copernican revolution; they went far 
beyond it. The universe of  Cusa was not 
a heliocentric cosmos with finite size, but 
a centerless cosmos whose size is infinite.

A History of  the Infinite after 1500
Nicholas of  Cusa had proposed ideas 

that appear to anticipate both Copernicus 
and Kepler. Like Copernicus, he proposed 
that Earth was not at the center of  the 
cosmos and was in motion. Like Kepler, he 
proposed that the motions of  the planets 
are not uniform or circular. Nicholas, 
however, did not base his arguments on 
empirical data, nor did he develop his 
ideas into mathematical models that could 
be tested against experience. Nicholas 
did not, like Copernicus, show that his 
ideas could account for astronomical 
observations with a respectable (although 
not perfect) amount of  accuracy. Nor 
did Nicholas come even remotely close 
to Kepler’s discovery that the planets 
precisely follow elliptical orbits and sweep 
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out equal areas in equal times. Although 
Nicholas does not deserve credit for 
these amazing discoveries themselves, 
his thought dramatically expanded the 
intellectual horizon of  his time, and 
opened up possibilities of  thought that 
allowed Copernicus and Kepler to make 
their breakthroughs.

Nicholas of  Cusa’s thought also 
opened up possibilities in mathematics 
that paved the way for calculus and a 
mathematics of  the continuum. Ever 
since the Pythagoreans discovered that 
certain geometrical magnitudes could 
not be expressed in terms of  arithmetic 
ratios, mathematics had been divided into 
two incommensurate branches: arithmetic 
and geometry. This division expressed 
a fundamental dichotomy between the 
infinite (the geometrical continuum) 
and the finite (the arithmetic of  whole 
numbers). The Arabs, however, did not let 
a lack of  rigorous theoretical foundations 
prevent them from freely assuming the 
existence of  irrational numbers and using 
them in calculations. The use of  irrationals 
was first introduced into Europe around 
1200 by Leonardo of  Pisa (Fibonacci). 
Although by Cusa’s time they were in 
widespread use across Europe, it was 
not clear in what sense they were actually 
numbers since they could not all be 
expressed in any definite way, such as by a 
finite decimal expansion. As Michael Stifel 
wrote in 1544: “That cannot be called a 
true number which is of  such a nature 
that it lacks precision...Therefore, just as 
an infinite number is not a number, so an 
irrational number is not a true number, but 
lies hidden in a kind of  cloud of  infinity.”10

Indeed, as it would be eventually 
discovered, the basis for irrational 
numbers requires a mathematics of  the 
infinite. Thus, as long as infinity was 
considered absolutely unthinkable, no such 
mathematics could be found. Through the 
use of  his logic of  infinity, and his revival 

of  the actuality of  the infinite, Nicholas of  
Cusa opened the door for these important 
developments in mathematics.

An essential step in the development 
of  modern science was the integration 
of  arithmetic and geometry by René 
Descartes (1596-1650) and Pierre de 
Fermat (1601-1665). Analytic geometry, as 
it was called, allowed geometrical objects 
to be transformed into algebraic equations, 
and vice versa. This correspondence is 
made possible by superimposing upon a 
geometric plane a Cartesian coordinate 
system that associates to each point P 
in the plane a unique pair of  numbers 
(x,y). For example, a circle, which is 
defined geometrically as the set of  points 
equidistant from a central point, can 
be represented algebraically as the set 
of  coordinates satisfying the equation 
x2+y2=r2, where r is the radius of  the circle.

At the foundation of  analytic geometry, 

GEOMETRY ALGEBRA

all points in a plane all coordinates (x,y)
a unique point P1 a unique pair of  

coordinates (x1,y1)
a circle with radius 
r and center P1 

(x,y) such that 
(x-x1)

2+(y-y1)
2=r2

a line passing 
through points  
P1 and P2

(x,y) such that 
(y-y2)=(x-x2) 
(y1-y2)/(x1-x2)

the intersection of  
the above line with 
the above circle

(x,y) such that both 
(x-x1)

2+(y-y1)
2=r2 

and (y-y2)=(x-x2)
(y1-y2)/(x1-x2)
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however, was the implicit assumption that 
there actually is a number associated with 
each point in the continuum of  geometric 
space. As the Pythagoreans had shown, 
however, there are no such numbers 
associated with certain geometrical 
magnitudes. Any attempt to express the 
coordinates of  certain points in numerical 
form, such as a decimal expansion, results 
in an infinite sequence. Nevertheless, 
analytic geometry continued to be used 
in spite of  these unresolved issues at its 
foundation. They would not be resolved 
until several hundred years later when a 
rigorous mathematical foundation for the 
real numbers was finally provided.

Calculus was a profound mathematical 
breakthrough with paradoxes of  the 
infinite at its heart. The development of  
the calculus was motivated in large part by 
the following problem: given an arbitrary 
point on a curve, what is the tangent 
line to the curve at that point? Using 
analytic geometry, this problem could be 
translated into an equivalent algebraic 
problem: given an arbitrary value of  one 
quantity (e.g., time), what is the rate of  
change (e.g., velocity) of  the other quantity  
(e.g., position)?

Systematic methods for solving this 

problem were independently developed 
by Sir Isaac Newton (1642-1727) and  
G. W. Leibniz (1646-1716), creating what 

is now called the calculus. By generalizing 
Eudoxus’s technique to arbitrary curves 
and using analytic geometry to apply the 
principles to algebraic equations, Leibniz 
and Newton provided powerful techniques 
for solving many mathematical problems 
that previously had been impossible to 
solve. The calculus allowed Newton, 
for example, to formulate his laws of  
classical physics and his law of  universal 
gravitation, which profoundly influenced 
the course of  Western history. Here is 
perhaps the most powerful example of  
how metaphysical thought about the 
Infinite has had dramatic consequences in 
the world.

Despite its remarkable practical success, 
however, at the heart of  the calculus were 
paradoxes and contradictions. In addition 
to the fact that it takes for granted the 
existence of  irrational numbers that 
cannot all be represented in any finite 
way, the calculus also involved nonsensical 
mathematical manipulations involving 
infinite sums of  infinitesimal quantities. 
These strange infinitesimals are at once 
smaller than any positive number, while 
also not being equal to zero. To make 
matters worse, the calculus also involved 
calculating infinite sums of  infinitesimals, 
which mysteriously resulted in finite 
numbers. Since the calculus worked, it 
obviously had some truth to it. Yet, it 
also involved mysterious and incoherent 
manipulations of  infinitesimal quantities, 
as well as infinite sums. Somehow, 
Newton and Leibniz had discovered a 
subtle “logic of  infinitude” that allowed 
them to perform mathematical marvels, 
without really being able to provide any 
rigorous account or rational foundation 
for their methods. Their techniques 
involved inconsistencies because Newton 
and Leibniz, following in Cusa’s footsteps, 
granted actual existence to the infinitely 
large and infinitely small, and by admitting 
that an infinite progression can result in an 
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actual limit.

It was not until the nineteenth century 
that a rigorous foundation for calculus was 
provided by Augustin Cauchy (1789-1857) 
and Karl Weierstrass (1815-1897). The 
essence of  their solution to the problem 
was to dispense with infinitesimals and 
the infinite altogether, and instead think 
in terms of  relationships between small, 
but finite, quantities that potentially can 
be made arbitrarily small. This approach 
was formalized in the mathematical 
conception of  limit. For example, the 
sequence of  polygons with increasing 
numbers of  sides has the circle as its limit 
because one can produce a polygon that 
is arbitrarily close to the circle by selecting 
the number of  sides to be sufficiently 
large. Thus, although the polygons never 
actually become the circle, a polygon can 
be found that is as close as one wants 
to the circle. Since there is no appeal to 
infinitesimals or the infinite, this reasoning 
provides a rigorous foundation for the 
methods of  the calculus. This rigorous 
foundation for calculus, thus represented 
a turn back toward the conception of  the 
potential infinite, and an elimination of  
the actual infinite from calculus.

Yet, a fundamental problem at the basis 
of  both analytic geometry and calculus 
remained unsolved: how can we justify 
using irrational numbers that cannot all 
be expressed in finite terms? The solution 
to this problem was provided by Richard 
Dedekind (1831-1916) who essentially was 
forced to formally introduce the infinity 
of  the continuum into mathematics. 
Because there are points in the geometrical 
continuum, such as the square root of  two, 
that do not correspond to any rational 
number, Dedekind devised a technique 
for filling the “gaps” between rational 
numbers with the irrational numbers. 
Dedekind’s definition, however, required 
the use of  infinite sets of  rational numbers. 
Thus, the actual infinite ultimately had 

to be explicitly affirmed in mathematics 
in order to provide a foundation for the 
numbers used in both analytic geometry 
and calculus.

Georg Cantor (1845-1918) was also 
instrumental in revitalizing the actual 
infinite in mathematics. He was the 
first to provide a rigorous mathematics 
of  transfinite numbers, as well as the 
first systematic mathematical theory 
of  sets. One of  Cantor’s fundamental 
contributions is a method for comparing 
the size of  infinite sets. According to 
Cantor’s definition, a first set is equal in 
size to a second if  there is a one-to-one 
correspondence between their members. 
For example, the set of  even integers is 
equal in size to the set of  odd integers. 
Less obvious, however, is the fact that the 
set of  even integers is equal in size to the 
set of  all integers: each integer is paired 
with its double. Even more remarkable 
was a proof  by Cantor that the set of  
integers is the same size as the set of  all 
rational numbers. Cantor also proved that 
the set of  points in a finite line segment 
is the same size as the set of  points in an 
infinitely long line. Moreover, the set of  
points in the finite line segment is also 
the same size as the set of  points in all 
of  three-dimensional space! With the 
continuum, therefore, an infinite space 
is completely contained in a finite line 
segment. One might begin to suspect 
from these discoveries that all infinite sets 
are the same size. Surprisingly, however, 
Cantor proved that the set of  points in the 
continuum of  a line is a larger infinity than 
the infinity of  the integers. Thus, there are 
different degrees of  mathematical infinity.

Cantor’s mathematics of  the infinite, 
however, had its own paradoxes. At 
the basis of  Cantor’s theory, and all of  
modern mathematics, is the intuition of  
set, which Cantor defined as follows: a set 
is a many which allows itself  to be thought 
of  as a one. Bertrand Russell (1872-1970) 
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soon discovered, however, that even the 
simple idea of  set has inherent paradoxes. 
Russell viewed these paradoxes as a 
problem to be eliminated by enforcing a 
strict linear hierarchy of  sets. Cantor, on 
the other hand, viewed these paradoxes 
as Cusa might have seen them: Whereas 
some collections of  many things can be 
consistently thought of  as a one, others 
are so infinitely large that they cannot be 
consistently thought of  as a one. Cantor 
called these collections inconsistent 
collections, and regarded them as 
absolutely infinite. Here we are reminded 
of  Cusa’s teaching that the infinite 
involves coincident contradictories. It is at 
this point that the consistent mathematics 
of  the infinite ends and the contradictory 
metaphysics of  the absolute infinite 
begins. As Cantor said, “The Absolute can 
only be acknowledged and admitted, never 
known, not even approximately.”11

The history of  the Infinite thus reveals 
in both mathematics and philosophy 
a development of  increasingly subtle 
thought in the form of  a dialectical dance 
around the ineffable and incomprehensible 
Infinite. First we step toward it, reaching 
with our intuition beyond the limits of  
rationality and thought into the realm 
of  the paradoxical. Then we step back, 
struggling to express our insight within 
the limited scope of  reason. But the 
Absolute Infinite remains at the border 
of  comprehensibility, inviting us with its 
paradoxes to once again step forward and 
transcend the apparent division between 
finite and Infinite. As Nicholas of  Cusa 
closes his treatise on learned ignorance, 
“These profound matters should be the 
subject of  all the effort of  our human 
intelligence, so that it may raise itself  
to that simplicity where contradictories 
coincide.”12
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